Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240276

RESUMO

Three novel biomaterials obtained via inclusion complexes of ß-cyclodextrin, 6-deoxi-6-amino-ß-cyclodextrin and epithelial growth factor grafted to 6-deoxi-6-amino-ß-cyclodextrin with polycaprolactone. Furthermore, some physicochemical, toxicological and absorption properties were predicted using bioinformatics tools. The electronic, geometrical and spectroscopical calculated properties agree with the properties obtained via experimental methods, explaining the behaviors observed in each case. The interaction energy was obtained, and its values were -60.6, -20.9 and -17.1 kcal/mol for ß-cyclodextrin/polycaprolactone followed by the 6-amino-ß-cyclodextrin-polycaprolactone complex and finally the complex of epithelial growth factor anchored to 6-deoxy-6-amino-ß-cyclodextrin/polycaprolactone. Additionally, the dipolar moments were calculated, achieving values of 3.2688, 5.9249 and 5.0998 Debye, respectively, and in addition the experimental wettability behavior of the studied materials has also been explained. It is important to note that the toxicological predictions suggested no mutagenic, tumorigenic or reproductive effects; moreover, an anti-inflammatory effect has been shown. Finally, the improvement in the cicatricial effect of the novel materials has been conveniently explained by comparing the poly-caprolactone data obtained in the experimental assessments.


Assuntos
Ciclodextrinas , Poliésteres , Peptídeos e Proteínas de Sinalização Intercelular , Solubilidade , 2-Hidroxipropil-beta-Ciclodextrina/química
2.
Polymers (Basel) ; 13(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923388

RESUMO

Polycaprolactone (PCL) is a well-known FDA approved biomaterial for tissue engineering. However, its hydrophobic properties limit its use for skin wound healing which makes its functionalization necessary. In this work, we present the fabrication and evaluation of PCL nanofibers by the electrospinning technique, as well as PCL functionalized with 6-deoxy-6-amino-ß-cyclodextrin (aminated nanofibers). Afterwards, epithelial growth factor (EGF) was anchored onto hydrophilic PCL/deoxy-6-amino-ß-cyclodextrin. The characterization of the three electrospun fibers was made by means of field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR); Confocal-Raman Spectroscopy were used for elucidated the chemical structure, the hydrophilicity was determined by Contact Angle (CA). In vitro cell proliferation test was made by seeding embryonic fibroblast cell line (3T3) onto the electrospun mats and in vivo studies in a murine model were conducted to prove its effectivity as skin wound healing material. The in vitro studies showed that aminated nanofibers without and with EGF had 100 and 150% more cell proliferation of 3T3 cells against the PCL alone, respectively. In vivo results showed that skin wound healing in a murine model was accelerated by the incorporation of the EGF. In addition, the EGF had favorable effects in epidermal cell proliferation. The study demonstrates that a protein of high biological interest like EGF can be attached covalently to the surface of a synthetic material enriched with amino groups. This kind of biomaterial has a great potential for applications in skin regeneration and wound healing.

3.
Molecules ; 22(10)2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29039759

RESUMO

The structure of the ortho-, meta- and para- hybrid diindolylmethane-phenylboronic acids and their interactions were optimized with by a quantum chemical method, using density functional theory at the (DFT) level. Thus, infrared bands were assigned based on the scaled theoretical wavenumbers by correlating the respective experimental data of the molecules. In addition, the corresponding ¹H-/13C-/11B-NMR experimental and theoretical chemical shifts were correlated. The target molecules showed a poor treatment of the OH shifts in the GIAO method due to the absence of explicit solvent effects in these calculations; therefore, they were explicitly considered with acetone molecules. Moreover, the electron density at the hydrogen bond critical point increased, generating stabilization energy, from weak to moderate or weak to strong, serving as an indicator of the strength of the hydrogen bond between the different intermolecular interactions. Finally, some properties related to the reactive behavior of the target molecules associated with their cytotoxic effects and metabolic pathways were also calculated.


Assuntos
Ácidos Borônicos/química , Indóis/química , Análise Espectral , Ácidos Borônicos/metabolismo , Ligação de Hidrogênio , Indóis/metabolismo , Espectroscopia de Ressonância Magnética , Desintoxicação Metabólica Fase I , Redes e Vias Metabólicas , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...